Exponentially Weighted Moving Average Smoothing Constant


Vooruitskatting deur gladstrykingstegnieke Hierdie webwerf is 'n deel van die JavaScript E-laboratoriums leer voorwerpe vir besluitneming. Ander JavaScript in hierdie reeks is verdeel onder verskillende gebiede van aansoeke in die menu artikel op hierdie bladsy. 'N tyd-reeks is 'n reeks waarnemings wat bestel betyds. Inherent in die versameling van data geneem met verloop van tyd is 'n vorm van ewekansige variasie. Daar bestaan ​​metodes vir die vermindering van van die kansellasie van die effek as gevolg van ewekansige variasie. Gebruikte tegnieke is glad. Hierdie tegnieke, wanneer dit behoorlik toegepas word, blyk duidelik die onderliggende tendense. Tik die tydreeks Ry-wyse in volgorde, vanaf die linker-boonste hoek, en die parameter (s), dan op die Bereken knoppie vir die verkryging van een tydperk lig vooruitskatting. Leeg bokse is nie ingesluit in die berekeninge, maar nulle is. In die begin van jou data om te beweeg van sel tot sel in die data-oorsig gebruik die Tab-sleutel nie arrow of betree sleutels. Kenmerke van tydreekse, wat geopenbaar kan word deur die ondersoek van die grafiek. met die geskatte waardes, en die residue gedrag, toestand voorspelling modelle. Bewegende gemiddeldes: bewegende gemiddeldes rang onder die gewildste tegnieke vir die preprocessing van tydreekse. Hulle word gebruik om ewekansige wit geraas filter uit die data, om die tydreeks gladder te maak of selfs om sekere inligting komponente vervat in die tydreeks te beklemtoon. Eksponensiële Smoothing: Dit is 'n baie gewilde skema om 'n reëlmatige Tyd Reeks produseer. Terwyl dit in Bewegende Gemiddeldes die afgelope waarnemings word dieselfde gewig, eksponensiële Smoothing ken eksponensieel afneem gewigte as die waarneming ouer. Met ander woorde, is Onlangse waarnemings gegee relatief meer gewig in vooruitskatting as die ouer waarnemings. Double Eksponensiële Smoothing is beter op tendense hantering. Drie Eksponensiële Smoothing beter te hanteer parabool tendense. 'N exponenentially geweeg bewegende gemiddelde met 'n glad konstante a. ooreenstem rofweg 'n eenvoudige bewegende gemiddelde lengte (bv tydperk) n, waar n en N verwant deur: 'n 2 / (N1) of N (2 - a) / n. So, byvoorbeeld, 'n exponenentially geweeg bewegende gemiddelde met 'n glad konstante gelyk aan 0,1 sou rofweg ooreen met 'n 19 dag bewegende gemiddelde. En 'n 40-dag eenvoudig bewegende gemiddelde sou rofweg ooreen met 'n eksponensieel geweeg bewegende gemiddelde met 'n glad konstante gelyk aan 0,04878. Holts Lineêre Eksponensiële Smoothing: Veronderstel dat die tydreeks is nie-seisoenale maar wel vertoon tendens. Holts metode skat beide die huidige vlak en die huidige tendens. Let daarop dat die eenvoudige bewegende gemiddelde is spesiale geval van die eksponensiële gladstryking deur die oprigting van die tydperk van die bewegende gemiddelde van die heelgetal deel van (2-Alpha) / Alpha. Vir die meeste sake-data 'n Alpha parameter kleiner as 0.40 is dikwels doeltreffend. Dit kan egter 'n mens 'n rooster op soek na die parameter ruimte uit te voer, met 0,1-0,9, met inkremente van 0.1. Toe het die beste alfa die kleinste gemiddelde absolute fout (MA Fout). Hoe om 'n paar glad metodes te vergelyk: Alhoewel daar numeriese aanwysers vir die beoordeling van die akkuraatheid van die voorspelling tegniek, die mees benadering is in die gebruik van visuele vergelyking van verskeie voorspellings oor die akkuraatheid daarvan te evalueer en kies tussen die verskillende vooruitskatting metodes. In hierdie benadering, moet 'n mens stip op dieselfde grafiek die oorspronklike waardes van 'n tydreeks veranderlike en die voorspelde waardes van verskillende vooruitskatting metodes (met behulp van, bv Excel), dus 'n visuele vergelyking fasilitering. Jy kan hou die gebruik van die verlede Voorspellings deur gladstrykingstegnieke JavaScript om die verlede voorspel waardes gebaseer op gladstrykingstegnieke dat slegs enkele parameter gebruik te verkry. Holt, en winters metodes gebruik twee en drie parameters, onderskeidelik, dus is dit nie 'n maklike taak om die optimale, of selfs naby optimale waardes kies deur probeer-en foute vir die parameters. Die enkele eksponensiële gladstryking beklemtoon die kort reeks perspektief dit stel die vlak van die laaste waarneming en is gebaseer op die voorwaarde dat daar geen tendens. Die lineêre regressie, wat 'n lyn van kleinste kwadrate op die historiese data (of omskep historiese data) pas, stel die lang reeks, wat gekondisioneer op die basiese tendens. Holts lineêre eksponensiële gladstryking vang inligting oor onlangse tendens. Die parameters in Holts model is vlakke-parameter wat moet verminder word wanneer die hoeveelheid data wat variasie is groot, en tendense-parameter moet verhoog word indien die onlangse tendens rigting word ondersteun deur die oorsaaklike paar faktore. Korttermyn vooruitskatting: Let daarop dat elke JavaScript op hierdie bladsy bied 'n een-stap-ahead skatting. Om 'n twee-stap-ahead voorspelling te kry. eenvoudig die geskatte waarde toevoeg tot die einde van jou tydreeksdata en kliek dan op dieselfde Bereken knoppie. Jy kan hierdie proses herhaal vir 'n paar keer om die nodige kort termyn forecasts. The ongelooflike manier om 'n bewegende gemiddelde fretten die tendens van 'n massa van verwarrende metings kan gesien word deur die plot die 10 dae - bewegende gemiddelde saam met die oorspronklike daaglikse verkry gewigte, getoon as klein diamante. Die bewegende gemiddeldes weve tot dusver gebruik gee gelyke belang vir al die dae in die gemiddelde. Dit neednt so wees. As jy daaroor dink, nie die geval is dit baie sin maak, veral as jy belangstel in die gebruik van 'n langer termyn bewegende gemiddelde uit te stryk ewekansige knoppe in die tendens. Aanvaar jy die gebruik van 'n 20 dag bewegende gemiddelde. Hoekom moet jou gewig byna drie weke gelede net so relevant is vir die huidige tendens as jou gewig vanoggend oorweeg verskillende vorme van geweeg bewegende gemiddeldes is ontwikkel om hierdie beswaar aan te spreek. In plaas daarvan om net te voeg tot die metings vir 'n reeks van dae en te deel deur die aantal dae, in 'n geweegde bewegende gemiddelde elke meting eerste vermenigvuldig met 'n gewig faktor wat verskil van dag tot dag. Die finale bedrag is verdeel, nie deur die aantal dae nie, maar deur die som van al die gewig faktore. As groter gewig faktore verder terug in die tyd gebruik word vir meer afgelope dae en kleiner faktore vir metings, sal die tendens meer reageer op onlangse veranderings sonder om die glad 'n bewegende gemiddelde bied nie. 'N ongeweegde bewegende gemiddelde is bloot 'n geweegde bewegende gemiddelde met al die gewig faktore gelyk is aan 1. Jy kan enige gewig faktore wat jy wil gebruik, maar 'n bepaalde stel met die jawbreaking monicker eksponensieel Reëlmatige bewegende gemiddelde nuttig bewys in aansoeke wat wissel van lug verdediging radar om handel die Chicago vark maag mark. Kom ons sit dit om te werk aan ons mae sowel. Hierdie grafiek vergelyk die gewig faktore vir 'n eksponensieel stryk 20 daagse bewegende gemiddelde met 'n eenvoudige bewegende gemiddelde wat gewigte elke dag ewe. Eksponensiële gladstryking gee vandag meting twee keer die betekenis van die eenvoudige gemiddelde sou dit wys, yesterdays meting 'n bietjie minder as dit, en elke opeenvolgende dag minder as sy voorganger met dag 20 dra net 20 so veel om die resultaat as 'n eenvoudige bewegende gemiddelde. Die gewig faktore in 'n eksponensieel stryk bewegende gemiddelde is opeenvolgende magte van 'n aantal het die glad konstante. 'N eksponensieel stryk bewegende gemiddelde met 'n glad konstante van 1 is identies aan 'n eenvoudige bewegende gemiddelde, sedert 1 tot enige bevoegdheid is 1. Smoothing konstantes minder as 1 weeg onlangse data swaarder, met die vooroordeel teenoor die mees onlangse metings toeneem soos die smoothing konstante afname in die rigting van nul. As die smoothing konstante oorskry 1, ouer data swaarder geweeg as onlangse metings. Dit plot toon die gewig faktore wat spruit uit verskillende waardes van die smoothing konstante. Let op hoe die gewig faktore is almal 1 wanneer die glad konstante is 1. Wanneer die glad konstante is tussen 0,5 en 0,9, die gewig wat aan ou data druppels af so vinnig in vergelyking met die meer onlangse metings wat nie nodig om die bewegende gemiddelde te beperk Theres 'n spesifieke aantal dae kan ons al die data wat ons het, terug na die begin gemiddeld en laat die gewig faktore bereken vanaf die glad konstante outomaties die ou data weggooi omdat dit irrelevant raak om die huidige trend. Exponential smoothing verduidelik word. kopie Kopiereg. Die inhoud van InventoryOps is kopiereg beskerm en is nie beskikbaar vir herdruk. Wanneer mense eers die term Eksponensiële Smoothing teëkom kan hulle dink dit klink soos 'n hel van 'n baie glad. alles glad is. Hulle het toe begin om 'n ingewikkelde wiskundige berekening wat waarskynlik vereis 'n graad in wiskunde te verstaan ​​voor oë, en ek hoop daar is 'n ingeboude EXCEL funksie beskikbaar indien hulle ooit nodig het om dit te doen. Die realiteit van eksponensiële gladstryking is veel minder dramatiese en baie minder traumaties. Die waarheid is, eksponensiële gladstryking is 'n baie eenvoudige berekening wat 'n redelik eenvoudige taak accomplishes. Dit het net 'n ingewikkelde naam want wat tegnies gebeur as gevolg van hierdie eenvoudige berekening is eintlik 'n bietjie ingewikkeld. Om eksponensiële gladstryking verstaan, help dit om te begin met die algemene konsep van glad en 'n paar ander algemene metodes wat gebruik word om glad te bereik. Wat is glad Smoothing is 'n baie algemene statistiese proses. Trouens, ons gereeld reëlmatige data in verskeie vorme in ons dag-tot-dag lewe teëkom. Enige tyd wat jy 'n gemiddelde gebruik om iets te beskryf, gebruik jy 'n reëlmatige nommer. As jy dink oor die rede waarom jy 'n gemiddelde gebruik om iets te beskryf, sal jy vinnig verstaan ​​die konsep van gladstryking. Byvoorbeeld, ons het net ervaar die warmste winter op rekord. Hoe is ons in staat was om te kwantifiseer hierdie Wel ons begin met datastelle van die daaglikse hoë en lae temperature vir die tydperk wat ons Winter bel vir elke jaar in die geskiedenis. Maar dit laat ons met 'n klomp van die nommers wat spring om nogal 'n bietjie (sy nie soos elke dag hierdie winter was warmer as die ooreenstemmende dae vanaf alle vorige jaar). Ons moet 'n getal wat al hierdie spring rond verwyder uit die data, sodat ons kan makliker vergelyk een winter na die volgende. Die verwydering van die spring rond in die data heet glad, en in hierdie geval kan ons net gebruik om 'n eenvoudige gemiddelde tot die smoothing bereik. In vraag vooruitskatting, gebruik ons ​​glad ewekansige variasie (geraas) van ons historiese vraag te verwyder. Dit stel ons in staat om die vraag patrone (hoofsaaklik tendens en seisoenaliteit) en vlakke vraag wat gebruik kan word om toekomstige vraag te skat beter te identifiseer. Die geraas in die vraag is dieselfde konsep as die daaglikse spring rond van die temperatuur data. Nie verrassend nie, die mees algemene manier waarop mense verwyder geraas uit die geskiedenis vraag is om 'n eenvoudige averageor meer spesifiek gebruik, 'n bewegende gemiddelde. 'N bewegende gemiddelde net gebruik 'n vooraf gedefinieerde aantal periodes om die gemiddelde te bereken, en diegene periodes beweeg met verloop van tyd. Byvoorbeeld, as Im met behulp van 'n 4-maand bewegende gemiddelde, en vandag is 1 Mei, Im met behulp van 'n gemiddeld van vraag wat plaasgevind het in Januarie, Februarie, Maart en April. Op 1 Junie sal ek wees met behulp van die vraag vanaf Februarie, Maart, April en Mei. Geweegde bewegende gemiddelde. By die gebruik van 'n gemiddelde ons aansoek doen dieselfde belangrikheid (gewig) aan elke waarde in die datastel. In die 4-maand bewegende gemiddelde, elke maand verteenwoordig 25 van die bewegende gemiddelde. By die gebruik van die geskiedenis vraag na die toekomstige vraag (en veral toekomstige tendens) - projek, sy logiese om tot die gevolgtrekking gekom dat jy wil graag meer onlangse geskiedenis 'n groter impak op jou voorspelling het gekom. Ons kan ons bewegende gemiddelde berekening te pas by verskillende gewigte van toepassing op elke tydperk aan ons gewenste resultate te kry. Ons spreek hierdie gewigte as persentasies, en die totaal van alle gewigte vir alle tye moet tot 100. Daarom voeg, as ons besluit ons wil aansoek doen 35 as die gewig vir die naaste tydperk in ons 4 maande geweeg bewegende gemiddelde, ons kan aftrek 35 van 100 om uit te vind ons het 65 oorblywende om verdeeld oor die ander 3 periodes. Byvoorbeeld, kan ons uiteindelik met 'n gewig van 15, 20, 30, en 35 onderskeidelik vir die 4 maande (15 20 30 35 100). Eksponensiële gladstryking. As ons teruggaan na die konsep van die toepassing van 'n gewig aan die mees onlangse tydperk (soos 35 in die vorige voorbeeld) en die verspreiding van die oorblywende gewig (bereken deur die mees onlangse tydperk gewig van 35 uit 100 te kry 65), het ons die basiese boustene vir ons eksponensiële gladstryking berekening. Die beheer van insette van die eksponensiële gladstryking berekening staan ​​bekend as die smoothing faktor (ook bekend as die glad konstante). Dit verteenwoordig in wese die toepassing op die mees onlangse vraag tydperke gewig. So, waar ons gebruik 35 as die gewig vir die mees onlangse tydperk in die geweegde bewegende gemiddelde berekening, kan ons ook kies om te gebruik 35 as die glad faktor in ons eksponensiële gladstryking berekening om 'n soortgelyke effek te kry. Die verskil met die eksponensiële gladstryking berekening is dat in plaas van ons om te ook uit te vind hoeveel gewig om aansoek te doen om elke vorige tydperk, die smoothing faktor is wat gebruik word om dit outomaties te doen. So hier kom die eksponensiële deel. As ons gebruik 35 as die glad faktor, sal die gewig van die mees onlangse vraag tydperke wees 35. Die gewig van die volgende mees onlangse vraag tydperke (die tydperk voor die mees onlangse) sal wees 65 van 35 (65 kom van aftrekking 35 van 100). Dit is gelykstaande aan 22,75 gewig vir daardie tydperk as jy die wiskunde te doen. Die volgende mees onlangse vraag tydperke sal wees 65 van 65 van 35, wat gelykstaande is aan 14,79. Die tydperk voor daardie gelaai sal word as 65 van 65 van 65 van 35, wat gelykstaande is aan 9,61, en so aan. En dit gaan oor terug deur al jou vorige tydperke al die pad terug na die begin van tyd (of die punt waar jy begin het met behulp van eksponensiële gladstryking vir daardie spesifieke item). Julle waarskynlik dink dis lyk soos 'n hele klomp van die wiskunde. Maar die skoonheid van die eksponensiële gladstryking berekening is dat eerder as om te herbereken teen mekaar vorige tydperk elke keer as jy 'n nuwe tydperke vraag te kry, moet jy eenvoudig die opbrengs van die eksponensiële gladstryking berekening gebruik van die vorige tydperk tot alle vorige tydperke verteenwoordig. Is jy verward nog Dit sal meer sin maak as ons kyk na die werklike berekening Tipies verwys ons na die uitset van die eksponensiële gladstryking berekening as die volgende tydperk skatting. In werklikheid, die uiteindelike voorspelling moet 'n bietjie meer werk nie, maar vir die doeleindes van hierdie spesifieke berekening, sal ons daarna verwys as die skatting. Die eksponensiële gladstryking berekening is soos volg: Die mees onlangse tye vra om 'vermenigvuldig met die smoothing faktor. PLUS Die mees onlangse tye voorspel vermenigvuldig met (een minus die smoothing faktor). D mees onlangse tydperke eis S die glad faktor wat in desimale vorm (so 35 sal verteenwoordig as 0.35). F die mees onlangse tye voorspel (die opbrengs van die smoothing berekening van die vorige tydperk). OF (met die aanvaarding 'n glad faktor van 0.35) (D 0.35) (F 0,65) Dit nie die geval kry baie makliker as dit. Soos jy kan sien, al wat ons nodig het vir data insette hier is die mees onlangse tydperke vraag en die mees onlangse tye voorspel. Ons pas die smoothing faktor (gewig) tot die mees onlangse tye op dieselfde manier sou ons in die geweegde bewegende gemiddelde berekening te eis. Ons het toe pas die oorblywende gewig (1 minus die smoothing faktor) om die mees onlangse tye voorspel. Sedert die mees onlangse tye voorspel is gemaak op grond van die vorige tydperke vraag en die vorige tydperke voorspel, wat gebaseer was op die vraag na die tydperk voor daardie en die voorspelling vir die tydperk voor dit, wat gebaseer was op die vraag na die tydperk voor dat en die voorspelling vir die tydperk voor dit, wat gebaseer is op die tydperk voor daardie. Wel, kan jy sien hoe alle vorige tydperke vraag word in die berekening sonder om werklik terug te gaan en iets herbereken. En dis wat gery die aanvanklike gewildheid van eksponensiële gladstryking. Dit was nie omdat dit nie 'n beter werk van glad as geweegde bewegende gemiddelde, was dit omdat dit makliker om te bereken in 'n rekenaarprogram was. En, omdat jy didnt nodig om te dink oor wat gewig te vorige tydperke of hoeveel vorige tydperke te gebruik gee, soos jy sou in geweegde bewegende gemiddelde. En, omdat dit net geklink koeler as geweegde bewegende gemiddelde. Trouens, dit kan aangevoer word dat geweegde bewegende gemiddelde bied groter buigsaamheid want jy het meer beheer oor die gewig van vorige tydperke. Die realiteit is een van hierdie kan gerespekteerde resultate lewer nie, so hoekom nie saam met makliker en koeler klinkende. Eksponensiële Smoothing in Excel Kom ons kyk hoe dit eintlik sou lyk in 'n sigblad met werklike data. kopie Kopiereg. Die inhoud van InventoryOps is kopiereg beskerm en is nie beskikbaar vir herdruk. In Figuur 1A, ons het 'n Excel spreiblad met 11 weke van die vraag, en 'n eksponensieel stryk voorspelling bereken vanaf daardie vraag. Ive gebruik 'n glad faktor van 25 (0.25 in sel C1). Die huidige aktiewe sel is Cell M4 wat die voorspelling vir week 12. Jy kan sien in die formule bar, die formule is (L3C1) (L4 (1-C1)) bevat. Dus is die enigste direkte insette tot hierdie berekening is die vorige tydperke vraag (Cell V3), die vorige tydperke voorspel (Cell L4), en die smoothing faktor (Cell C1, getoon as absolute selverwysing C1). Wanneer ons begin 'n eksponensiële gladstryking berekening, moet ons die waarde hand prop vir die 1ste skatting. So in Cell B4, eerder as om 'n formule, ons het net getik in die vraag van wat in dieselfde tydperk as die skatting. In Cell C4 het ons 1 eksponensiële gladstryking berekening (B3C1) (B4 (1-C1)). Ons kan dan kopieer Cell C4 en plak dit in die selle D4 deur M4 om die res van ons vooruitskatting selle te vul. Jy kan nou dubbel-kliek op 'n voorspelling sel om te sien dit is gebaseer op die vorige tydperke voorspel sel en die vorige tydperke te eis sel. So elke daaropvolgende eksponensiële gladstryking berekening erf die uitset van die vorige eksponensiële gladstryking berekening. Dis hoe elke vorige tydperke vraag word in die mees onlangse berekening tydperke alhoewel dit berekening diegene vorige tydperke nie direk verwys. As jy wil fancy te kry, kan jy uitblink spoor presedente funksie gebruik. Om dit te doen, klik op Cell M4, dan op die lint nutsbalk (Excel 2007 of 2010) op die blad Formules, kliek Trace Presedente. Dit sal connector lyne te vestig op die 1ste vlak van presedente, maar as jy hou kliek Trace Presedente sal dit connector lyne om alle vorige tydperke te trek om jou te wys die geërf verhoudings. Nou kan sien wat eksponensiële gladstryking vir ons gedoen het. Figuur 1 B toon 'n grafiek van ons eis en skatting. Jy geval sien hoe die eksponensieel stryk voorspelling verwyder die meeste van die jaggedness (die spring rond) van die weeklikse vraag, maar steeds daarin slaag om te volg wat lyk na 'n opwaartse neiging in die vraag wees. Jy sal ook agterkom dat die reëlmatige voorspelling lyn geneig laer as die vraag lyn te wees. Dit staan ​​bekend as tendens lag en is 'n newe-effek van die smoothing proses. Enige tyd wat jy glad gebruik wanneer 'n tendens teenwoordig is jou voorspelling sal agter die tendens. Dit is waar vir enige glad tegniek. Trouens, as ons hierdie sigblad voort en begin skryf laer vraag nommers ( 'n afwaartse neiging) jy sou die vraag lyn val, en die tendens lyn skuif bo dit voor die aanvang van die afwaartse neiging volg sien. Dis hoekom ek voorheen genoem die uitset van die eksponensiële gladstryking berekening dat ons 'n voorspelling te roep, moet nog 'n paar meer werk. Daar is 'n baie meer om vooruitskatting as net glad uit die knoppe in aanvraag. Ons moet bykomende aanpassings vir dinge soos tendens lag, seisoenaliteit, bekend gebeure wat die vraag, ens kan bewerkstellig Maar alles wat buite die bestek van hierdie artikel maak. Jy sal waarskynlik ook loop in terme soos dubbel-eksponensiële gladstryking en trippel-eksponensiële gladstryking. Hierdie terme is 'n bietjie misleidend aangesien jy nie weer glad die vraag meer as een keer (jy kan as jy wil, maar dis nie die punt hier). Hierdie terme verteenwoordig met behulp van eksponensiële gladstryking op bykomende elemente van die skatting. So met 'n eenvoudige eksponensiële gladstryking, is jy glad die vraag basis, maar met 'n dubbele-eksponensiële gladstryking jy glad die vraag basis plus die tendens, en met drie-eksponensiële gladstryking jy glad die vraag basis plus die tendens plus die seisoen. Die ander mees algemene vraag oor eksponensiële gladstryking is waar kry ek my glad faktor Daar is geen magiese antwoord hier, moet jy verskeie glad faktore toets met jou vraag data om te sien wat jy kry die beste resultate. Daar is berekeninge wat outomaties kan stel (en verandering) die smoothing faktor. Hierdie val onder die term aanpasbaar glad nie, maar jy moet versigtig wees om met hulle te wees. Daar is eenvoudig geen perfekte antwoord en jy moet nie blindelings te implementeer enige berekening sonder deeglike toetsing en ontwikkeling van 'n deeglike begrip van wat dit berekening doen. Jy moet ook hardloop what-if scenario's om te sien hoe hierdie berekeninge te reageer op veranderinge wat nog nie op die oomblik kan bestaan ​​in die vraag data wat jy gebruik vir die toets te eis. Die data voorbeeld wat ek voorheen gebruik is 'n baie goeie voorbeeld van 'n situasie waar jy regtig nodig het om 'n ander scenario's te toets. Daardie spesifieke data voorbeeld toon 'n ietwat konsekwent opwaartse neiging. Baie groot maatskappye met baie duur vooruitskatting sagteware het in groot moeilikheid in die nie-so-verre verlede toe hulle sagteware instellings wat tweaked vir 'n groeiende ekonomie didnt goed reageer wanneer die ekonomie begin stagneer of krimp. Dinge soos dit gebeur wanneer jy dit nie verstaan ​​wat jou berekeninge (sagteware) is eintlik. As hulle hul vooruitskatting stelsel verstaan, sou hulle geweet het wat hulle nodig het om in te spring en iets te verander wanneer daar skielike dramatiese veranderinge aan hul besigheid. So daar het jy dit die basiese beginsels van die eksponensiële gladstryking verduidelik. Wil jy meer oor die gebruik van eksponensiële gladstryking in 'n werklike vooruitsig, check out my boek Inventory Management Hoe weet. kopie Kopiereg. Die inhoud van InventoryOps is kopiereg beskerm en is nie beskikbaar vir herdruk. Dave Piasecki. is eienaar / operateur van Inventory Bedryf Consulting LLC. 'n raadgewende firma die verskaffing van dienste wat verband hou met voorraad beheer, materiaal hantering, en pakhuis bedrywighede. Hy het meer as 25 jaar ondervinding in die operasionele bestuur en kan bereik word deur middel van sy webwerf (www. inventoryops), waar hy verdere relevante inligting handhaaf. My BusinessExploring Die eksponensieel Geweegde Moving Gemiddelde Volatiliteit is die mees algemene maatstaf van risiko, maar dit kom in verskeie geure. In 'n vorige artikel het ons gewys hoe om eenvoudige historiese wisselvalligheid te bereken. (Om hierdie artikel te lees, sien Die gebruik van Volatiliteit Om toekomstige risiko te meet.) Ons gebruik Googles werklike aandele prys data om daaglikse wisselvalligheid gebaseer op 30 dae van voorraad data bereken. In hierdie artikel, sal ons verbeter op eenvoudige wisselvalligheid en bespreek die eksponensieel geweeg bewegende gemiddelde (EWMA). Historiese Vs. Geïmpliseer Volatiliteit Eerste, laat sit hierdie metrieke in 'n bietjie van perspektief. Daar is twee breë benaderings: historiese en geïmpliseer (of implisiete) wisselvalligheid. Die historiese benadering veronderstel dat verlede is proloog ons geskiedenis te meet in die hoop dat dit voorspellende. Geïmpliseerde wisselvalligheid, aan die ander kant, ignoreer die geskiedenis wat dit oplos vir die wisselvalligheid geïmpliseer deur markpryse. Hulle hoop dat die mark weet die beste en dat die markprys bevat, selfs al is implisiet, 'n konsensus skatting van wisselvalligheid. (Vir verwante leesstof, sien die gebruike en beperkinge van Volatiliteit.) As ons fokus op net die drie historiese benaderings (op die bogenoemde links), hulle het twee stappe in gemeen: Bereken die reeks periodieke opgawes Pas 'n gewig skema Eerstens, ons bereken die periodieke terugkeer. Dis gewoonlik 'n reeks van die daaglikse opgawes waar elke terugkeer uitgedruk in voortdurend saamgestel terme. Vir elke dag, neem ons die natuurlike log van die verhouding van aandele pryse (dit wil sê die prys vandag gedeel deur die prys gister, en so aan). Dit veroorsaak 'n reeks van die daaglikse opbrengs van u ek u i-m. afhangende van hoeveel dae (m dae) ons meet. Dit kry ons by die tweede stap: Dit is hier waar die drie benaderings verskil. In die vorige artikel (Die gebruik van Volatiliteit Om toekomstige risiko Gauge), ons het getoon dat onder 'n paar aanvaarbare vereenvoudigings, die eenvoudige afwyking is die gemiddeld van die kwadraat opbrengste: Let daarop dat hierdie som elk van die periodieke opgawes, verdeel dan wat totaal deur die aantal dae of waarnemings (m). So, dit is regtig net 'n gemiddeld van die kwadraat periodieke opgawes. Anders gestel, is elke vierkant terugkeer gegee 'n gelyke gewig. So as alfa (a) is 'n gewig faktor (spesifiek, 'n 1 / m), dan 'n eenvoudige variansie lyk iets soos hierdie: Die EWMA Verbeter op Eenvoudige Variansie Die swakheid van hierdie benadering is dat alle opgawes verdien dieselfde gewig. Yesterdays (baie onlangse) terugkeer het geen invloed meer op die variansie as verlede maande terugkeer. Hierdie probleem is opgelos deur die gebruik van die eksponensieel geweeg bewegende gemiddelde (EWMA), waarin meer onlangse opbrengste het 'n groter gewig op die variansie. Die eksponensieel geweeg bewegende gemiddelde (EWMA) stel lambda. wat die smoothing parameter genoem. Lambda moet minstens een wees. Onder daardie toestand, in plaas van gelyke gewigte, elke vierkant terugkeer is geweeg deur 'n vermenigvuldiger soos volg: Byvoorbeeld, RiskMetrics TM, 'n finansiële risikobestuur maatskappy, is geneig om 'n lambda van 0,94, of 94. gebruik in hierdie geval, die eerste ( mees onlangse) kwadraat periodieke terugkeer is geweeg deur (1-0,94) (. 94) 0 6. die volgende kwadraat terugkeer is bloot 'n lambda-veelvoud van die vorige gewig in hierdie geval 6 vermenigvuldig met 94 5.64. En die derde voor dae gewig gelyk (1-0,94) (0.94) 2 5,30. Dis die betekenis van eksponensiële in EWMA: elke gewig is 'n konstante vermenigvuldiger (dit wil sê lambda, wat moet wees minder as een) van die dae gewig voor. Dit sorg vir 'n afwyking wat geweeg of voorkeur vir meer onlangse data. (Vir meer inligting, kyk na die Excel Werkkaart vir Googles Volatiliteit.) Die verskil tussen net wisselvalligheid en EWMA vir Google word hieronder getoon. Eenvoudige wisselvalligheid effektief weeg elke periodieke terugkeer deur 0,196 soos uiteengesit in kolom O (ons het twee jaar van die daaglikse aandeleprys data. Dit is 509 daaglikse opgawes en 1/509 0,196). Maar let op dat Kolom P ken 'n gewig van 6, dan 5.64, dan 5.3 en so aan. Dis die enigste verskil tussen eenvoudige variansie en EWMA. Onthou: Nadat ons die hele reeks (in kolom Q) het ons die variansie, wat is die kwadraat van die standaardafwyking som. As ons wil hê wisselvalligheid, moet ons onthou om die vierkantswortel van daardie afwyking te neem. Wat is die verskil in die daaglikse wisselvalligheid tussen die variansie en EWMA in Googles geval beduidende: Die eenvoudige variansie het ons 'n daaglikse wisselvalligheid van 2,4, maar die EWMA het 'n daaglikse wisselvalligheid van slegs 1.4 (sien die sigblad vir besonderhede). Blykbaar, Googles wisselvalligheid bedaar meer onlangs dus kan 'n eenvoudige variansie kunsmatig hoog wees. Vandag se afwyking is 'n funksie van Pior Dae Variansie Youll kennisgewing wat ons nodig het om 'n lang reeks van eksponensieel afneem gewigte bereken. Ons sal nie die wiskunde doen hier, maar een van die beste eienskappe van die EWMA is dat die hele reeks gerieflik verminder tot 'n rekursiewe formule: Rekursiewe beteken dat vandag se stryd verwysings (dit wil sê 'n funksie van die vorige dae variansie). Jy kan hierdie formule in die sigblad ook, en dit lei tot die presies dieselfde resultaat as die skuldbewys berekening Dit sê: Vandag se variansie (onder EWMA) gelyk yesterdays variansie (geweeg volgens lambda) plus yesterdays kwadraat terugkeer (geweeg deur een minus lambda). Let op hoe ons net bymekaar te tel twee terme: yesterdays geweegde variansie en yesterdays geweeg, vierkantig terugkeer. Net so is, lambda is ons glad parameter. 'N Hoër lambda (bv soos RiskMetrics 94) dui stadiger verval in die reeks - in relatiewe terme, gaan ons meer datapunte in die reeks en hulle gaan stadiger af te val. Aan die ander kant, as ons die lambda verminder, dui ons hoër verval: die gewigte val vinniger af en, as 'n direkte gevolg van die snelle verval, is minder datapunte gebruik. (In die sigblad, lambda is 'n inset, sodat jy kan eksperimenteer met sy sensitiwiteit). Opsomming Volatiliteit is die oombliklike standaardafwyking van 'n voorraad en die mees algemene risiko metrieke. Dit is ook die vierkantswortel van variansie. Ons kan variansie histories of implisiet (geïmpliseer wisselvalligheid) te meet. Wanneer histories meet, die maklikste metode is eenvoudig variansie. Maar die swakheid met 'n eenvoudige afwyking is alle opgawes kry dieselfde gewig. So staan ​​ons voor 'n klassieke kompromis: ons wil altyd meer inligting, maar hoe meer data het ons die meer ons berekening verwater deur verre (minder relevant) data. Die eksponensieel geweeg bewegende gemiddelde (EWMA) verbeter op eenvoudige variansie deur die toeken van gewigte aan die periodieke opgawes. Deur dit te doen, kan ons albei gebruik 'n groot monster grootte, maar ook 'n groter gewig te gee aan meer onlangse opbrengste. (Om 'n fliek handleiding te sien oor hierdie onderwerp, besoek die Bionic skilpad.) Eksponensiële Filter Hierdie bladsy beskryf eksponensiële filter, die eenvoudigste en mees gewilde filter. Dit is deel van die artikel filter wat deel is van 'n Gids tot Fout opsporing en diagnose .. Oorsig, tydkonstante, en analoog gelykstaande Die eenvoudigste filter is die eksponensiële filter. Dit het net een stem parameter (behalwe die voorbeeld interval). Dit vereis dat die berging van slegs een veranderlike - die vorige uitset. Dit is 'n IIR (outoregressiewe) filter - die gevolge van 'n inset verandering verval eksponensieel tot die grense van uitstallings of rekenaar rekenkundige wegsteek nie. In verskeie dissiplines, is die gebruik van hierdie filter ook verwys na as 8220exponential smoothing8221. In sommige dissiplines soos belegging analise, is die eksponensiële filter genoem 'n 8220Exponentially Geweegde Moving Average8221 (EWMA), of net 8220Exponential Moving Average8221 (EMA). Dit misbruik die tradisionele ARMA 8220moving average8221 terminologie van tydreeksanalise, want daar is geen insette geskiedenis wat gebruik word - net die huidige insette. Dit is die diskrete tyd ekwivalent van die 8220first orde lag8221 algemeen gebruik in analoog modellering van kontinue-tyd stelsels. In elektriese stroombane, 'n RC filter (filter met een weerstand en een kapasitor) is 'n eerste-orde lag. Wanneer die klem op die analogie te analoog stroombane, die enkele stem parameter is die 8220time constant8221, gewoonlik geskryf as die kleinletter Griekse letter Tau (). Trouens, die waardes van die diskrete monster tye presies ooreenstem met die ekwivalent deurlopende tydsverloop met dieselfde tyd konstant. Die verhouding tussen die digitale implementering en die tydkonstante word in die onderstaande vergelykings. Eksponensiële filter vergelykings en inisialisering Die eksponensiële filter is 'n geweegde kombinasie van die vorige skatting (uitset) met die nuutste insette data, met die som van die gewigte gelyk aan 1 sodat die uitset ooreenstem met die insette by gestadigde toestande. Na aanleiding van die filter notasie reeds bekendgestel: y (k) ay (k-1) (1-a) x (k) waar x (k) is die rou insette ten tye stap ky (k) is die gefilterde uitset ten tye stap ka is 'n konstante tussen 0 en 1, gewoonlik tussen 0.8 en 0.99. (A-1) of 'n word soms die 8220smoothing constant8221. Vir stelsels met 'n vaste tyd stap T tussen monsters, is die konstante 8220a8221 bereken en gestoor vir die gemak net vir die program ontwikkelaar spesifiseer 'n nuwe waarde van die verlangde tyd konstant. Vir stelsels met monsterneming data op ongereelde tussenposes, moet die eksponensiële funksie hierbo gebruik word met elke keer stap, waar t die tyd sedert die vorige voorbeeld. Die filter uitset is gewoonlik geïnisialiseer die eerste insette te pas. Soos die tydkonstante benaderings 0, 'n gaan na nul, so daar is geen filter 8211 die uitset is gelyk aan die nuwe insette. Soos die tydkonstante kry baie groot, 'n benaderings 1, sodat nuwe insette byna geïgnoreer 8211 baie swaar filter. Die filter vergelyking hierbo kan herrangskik in die volgende voorspeller-corrector ekwivalent: Hierdie vorm maak dit meer duidelik dat die veranderlike skatting (uitset van die filter) word voorspel as onveranderd teenoor die vorige skatting y (k-1) plus 'n regstelling termyn gebaseer op die onverwagte 8220innovation8221 - die verskil tussen die nuwe insette x (k) en die voorspelling y (k-1). Hierdie vorm is ook die gevolg van die afleiding van die eksponensiële filter as 'n eenvoudige spesiale geval van 'n Kalman filter. wat is die optimale oplossing vir 'n skatting probleem met 'n bepaalde stel aannames. Stap reaksie Een manier om te visualiseer die werking van die eksponensiële filter is om sy reaksie verloop van tyd tot 'n stap insette plot. Dit wil sê, wat begin met die filter toevoer en afvoer by 0, is die insetwaarde skielik verander na 1. Die gevolglike waardes word hieronder aangestip: In die bogenoemde plot, is die tyd gedeel deur die filter tydkonstante TLU, sodat jy kan meer maklik voorspel die resultate vir enige tydperk, vir enige waarde van die filter tydkonstante. Na 'n tyd gelyk aan die tydkonstante, die filter uitset styg tot 63,21 van sy finale waarde. Na 'n tyd gelyk aan 2 keer konstantes, die waarde styg tot 86,47 van sy finale waarde. Die uitset na tye gelyk aan 3,4 en 5 keer konstantes is 95,02, 98,17, en 99,33 van die finale waarde, onderskeidelik. Sedert die filter is lineêre, beteken dit dat hierdie persentasies kan gebruik word vir enige grootte van die stapverandering, nie net vir die waarde van 1 wat hier gebruik word. Hoewel die stap reaksie in teorie neem 'n oneindige tyd, uit 'n praktiese oogpunt, dink aan die eksponensiële filter as 98-99 8220done8221 reageer ná 'n tyd gelyk aan 4 tot 5 filter tyd konstantes. Variasies op die eksponensiële filter Daar is 'n variasie van die eksponensiële filter bekend as 'n 8220nonlinear eksponensiële filter8221 Weber, 1980 bedoel om swaar filter geraas binne 'n sekere 8220typical8221 amplitude, maar dan vinniger te reageer op groter veranderinge. Kopiereg 2010 - 2013, Greg Stanley Deel hierdie bladsy:

Comments

Popular Posts